Introduction to Java™ Programming
Brief Version

ELEVENTH EDITION

Y. Daniel Liang

@ Pearson

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes,
and more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Daniel Liang’s
Introduction to Java™ Programming, Brief Version, Eleventh Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/liang

2. Enter the title of your textbook or browse by author name.

3. Click Companion Website.

4. Click Register and follow the on-screen instructions to create a login name and password.

ISSLJB-FLUFF-ALIEN-PAREU-BEGUN-OOSSE

Use the login name and password you created during registration to start using the
digital resources that accompany your textbook.

IMPORTANT:

This prepaid subscription does not include access to MyProgramminglLab, which is available at
www.myprogramminglab.com for purchase.

This access code can only be used once. This subscription is valid for 12 months upon activation
and is not transferable. If the access code has already been revealed it may no longer be valid.

For technical support go to https://support.pearson.com/getsupport

INTRODUCTION TO

JAVA

PROGRAMMING

BRIEF VERSION

Eleventh Edition
Global Edition

Y. Daniel Liang

Armstrong State University

@ Pearson
330 Hudson Street, NY NY 10013

To Samantha, Michael, and Michelle

Senior Vice President Courseware Portfolio Senior Manufacturing Controller, Production, Global
Management: Marcia J. Horton Edition: Jerry Kataria

Director, Portfolio Management: Engineering, Comput- Rights and Permissions Manager: Ben Ferrini
er Science & Global Editions: Julian Partridge Manufacturing Buyer, Higher Ed, Lake Side

Higher Ed Portfolio Management: Tracy Johnson Communications Inc (LSC): Maura Zaldivar-Garcia
(Dunkelberger) Inventory Manager: Ann Lam

Portfolio Management Assistant: Kristy Alaura Marketing Manager: Demetrius Hall

Managing Content Producer: Scott Disanno Product Marketing Manager: Bram Van Kempen

Content Producer: Robert Engelhardt Marketing Assistant: Jon Bryant

Web Developer: Steve Wright Cover Designer: Lumina Datamatics

Assistant Acquisitions Editor, Global Edition: Aditee Cover Image: Eduardo Rocha/ shutterstock.com
Agarwal Full-Service Project Management: Shylaja Gattupalli,

Assistant Project Editor, Global Edition: Shaoni Mukherjee SPi Global

Manager, Media Production, Global Edition: Vikram
Kumar

Java™ and Netbeans™ screenshots ©2017 by Oracle Corporation, all rights reserved. Reprinted with permission.
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on the appropriate page within text. Microsoft and/or its respective suppliers make no representations about the suit-
ability of the information contained in the documents and related graphics published as part of the services for any
purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or
its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all war-
ranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title
and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or performance of information
available from the services. The documents and related graphics contained herein could include technical inaccuracies
or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Pearson Education Limited
KAO Two

KAO Park

Harlow

CM17 9NA

United Kingdom

and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsonglobaleditions.com
© Pearson Education Limited 2019

The rights of Y. Daniel Liang to be identified as the author of this work have been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Introduction to Java Programming, Brief Version,
11th Edition, ISBN 978-0-13-461103-7 by Y. Daniel Liang, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trade-
marks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
10987654321

Typeset by SPi Global. ISBN 10: 1-292-22203-4
Printed and bound by Vivar in Malaysia ISBN 13: 978-1-292-22203-5

PREFACE

Dear Reader,

Many of you have provided feedback on earlier editions of this book, and your comments and
suggestions have greatly improved the book. This edition has been substantially enhanced in
presentation, organization, examples, exercises, and supplements.

The book is fundamentals first by introducing basic programming concepts and techniques
before designing custom classes. The fundamental concepts and techniques of selection
statements, loops, methods, and arrays are the foundation for programming. Building this
strong foundation prepares students to learn object-oriented programming and advanced Java
programming.

This book teaches programming in a problem-driven way that focuses on problem solving
rather than syntax. We make introductory programming interesting by using thought-provok-
ing problems in a broad context. The central thread of early chapters is on problem solving.
Appropriate syntax and library are introduced to enable readers to write programs for solving
the problems. To support the teaching of programming in a problem-driven way, the book
provides a wide variety of problems at various levels of difficulty to motivate students. To
appeal to students in all majors, the problems cover many application areas, including math,
science, business, financial, gaming, animation, and multimedia.

This book is widely used in the introductory programming courses in the universities
around the world. The book is a brief version of Introduction to Java Programming and
Data Structures, Comprehensive Version, Eleventh Edition, Global Edition. This version is
designed for an introductory programming course, commonly known as CS1. It contains the
first eighteen chapters in the comprehensive version and covers fundamentals of programming,
object-oriented programming, GUI programming, exception handling, I/O, and recursion.
The comprehensive version has additional twenty-six chapters that cover data structures,
algorithms, concurrency, parallel programming, networking, internationalization, advanced
GUI, database, and Web programming.

The best way to teach programming is by example, and the only way to learn programming
is by doing. Basic concepts are explained by example and a large number of exercises with
various levels of difficulty are provided for students to practice. For our programming courses,
we assign programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad
context using a wide variety of interesting examples. If you have any comments on and
suggestions for improving the book, please email me.

Sincerely,

Y. Daniel Liang
y.daniel.liang @ gmail.com

fundamentals-first

problem-driven

brief version
comprehensive version

4 Preface

ACM/IEEE Curricular 2013 and ABET
Course Assessment

The new ACM/IEEE Computer Science Curricular 2013 defines the Body of Knowledge
organized into 18 Knowledge Areas. To help instructors design the courses based on this book,
we provide sample syllabi to identify the Knowledge Areas and Knowledge Units. The sample
syllabi are for a three semester course sequence and serve as an example for institutional cus-
tomization. The sample syllabi are accessible from the Instructor Resource Center.

Many of our users are from the ABET-accredited programs. A key component of the
ABET accreditation is to identify the weakness through continuous course assessment against
the course outcomes. We provide sample course outcomes for the courses and sample exams
for measuring course outcomes on the Instructor Resource Center.

What’s New in This Edition?

This edition is completely revised in every detail to enhance clarity, presentation, content,
examples, and exercises. The major improvements are as follows:

B Updated to the latest Java technology. Examples and exercises are improved and simplified
by using the new features in Java 8.

B The default and static methods are introduced for interfaces in Chapter 13.

B The GUI chapters are updated to JavaFX 8. The examples are revised. The user interfaces
in the examples and exercises are now resizable and displayed in the center of the window.

B Inner classes, anonymous inner classes, and lambda expressions are covered using practi-
cal examples in Chapter 15.

B More examples and exercises in the data structures chapters use lambda expressions to
simplify coding.

B The Companion Website has been redesigned with new interactive quiz, CheckPoint ques-
tions, animations, and live coding.

B More than 200 additional programming exercises with solutions are provided to the
instructor in the Companion Website. These exercises are not printed in the text.

Pedagogical Features

The book uses the following elements to help students get the most from the material:

B The Objectives at the beginning of each chapter list what students should learn from
the chapter. This will help them determine whether they have met the objectives after
completing the chapter.

B The Introduction opens the discussion with representative problems to give the reader an
overview of what to expect from the chapter.

m Key Points highlight the important concepts covered in each section.

B Check Points provide review questions to help students track their progress as they read
through the chapter and evaluate their learning.

B Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to demonstrate important ideas.

B The Chapter Summary reviews the important subjects that students should
understand and remember. It helps them reinforce the key concepts they have learned
in the chapter.

B Quizzes are accessible online, grouped by sections, for students to do self-test on
programming concepts and techniques.

B Programming Exercises are grouped by sections to provide students with opportunities
to apply the new skills they have learned on their own. The level of difficulty is rated as
easy (no asterisk), moderate (*), hard (**), or challenging (***). The trick of learning
programming is practice, practice, and practice. To that end, the book provides a great
many exercises. Additionally, more than 200 programming exercises with solutions are
provided to the instructors on the Instructor Resource Center. These exercises are not
printed in the text.

B Notes, Tips, Cautions, and Design Guides are inserted throughout the text to offer
valuable advice and insight on important aspects of program development.

Note
Provides additional information on the subject and reinforces important concepts.

Tip
Teaches good programming style and practice.

A Caution
Helps students steer away from the pitfalls of programming errors.

Design Guide

Provides guidelines for designing programs.

Flexible Chapter Orderings

The book is designed to provide flexible chapter orderings to enable GUI, exception handling,
and recursion to be covered earlier or later. The diagram on the next page shows the chapter
dependencies.

Preface 5

6 Preface

Part I: Fundamentals of Part II: Object-Oriented Part I1I: GUI Programming
Programming Programming

Organization of the Book

The chapters in this brief version can be grouped into three parts that, taken together, form a
solid introduction to Java programming. Because knowledge is cumulative, the early chapters
provide the conceptual basis for understanding programming and guide students through simple
examples and exercises; subsequent chapters progressively present Java programming in detail,
culminating with the development of comprehensive Java applications. The appendixes contain
a mixed bag of topics, including an introduction to number systems, bitwise operations, regular
expressions, and enumerated types.

Part I: Fundamentals of Programming (Chapters 1-8, 18)

The first part of the book is a stepping stone, preparing you to embark on the journey of learning
Java. You will begin to learn about Java (Chapter 1) and fundamental programming techniques
with primitive data types, variables, constants, assignments, expressions, and operators (Chapter
2), selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4),
loops (Chapter 5), methods (Chapter 6), and arrays (Chapters 7-8). After Chapter 7, you can jump
to Chapter 18 to learn how to write recursive methods for solving inherently recursive problems.

Part II: Object-Oriented Programming (Chapters 9-13, and 17)

This part introduces object-oriented programming. Java is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide

great flexibility, modularity, and reusability in developing software. You will learn program-
ming with objects and classes (Chapters 9-10), class inheritance (Chapter 11), polymorphism
(Chapter 11), exception handling (Chapter 12), abstract classes (Chapter 13), and interfaces
(Chapter 13). Text I/O is introduced in Chapter 12 and binary I/O is discussed in Chapter 17.

Part III: GUI Programming (Chapters 14-16)

JavaFX is a new framework for developing Java GUI programs. It is not only useful for
developing GUI programs, but also an excellent pedagogical tool for learning object-oriented
programming. This part introduces Java GUI programming using JavaFX in Chapters 14-16.
Major topics include GUI basics (Chapter 14), container panes (Chapter 14), drawing shapes
(Chapter 14), event-driven programming (Chapter 15), animations (Chapter 15), and GUI con-
trols (Chapter 16), and playing audio and video (Chapter 16). You will learn the architecture
of JavaFX GUI programming and use the controls, shapes, panes, image, and video to develop
useful applications.

Appendixes

This part of the book covers a mixed bag of topics. Appendix A lists Java keywords.
Appendix B gives tables of ASCII characters and their associated codes in decimal and in
hex. Appendix C shows the operator precedence. Appendix D summarizes Java modifiers and
their usage. Appendix E discusses special floating-point values. Appendix F introduces num-
ber systems and conversions among binary, decimal, and hex numbers. Finally, Appendix G
introduces bitwise operations. Appendix H introduces regular expressions. Appendix I covers
enumerated types.

Java Development Tools

You can use a text editor, such as the Windows Notepad or WordPad, to create Java programs
and to compile and run the programs from the command window. You can also use a Java
development tool, such as NetBeans or Eclipse. These tools support an integrated develop-
ment environment (IDE) for developing Java programs quickly. Editing, compiling, building,
executing, and debugging programs are integrated in one graphical user interface. Using these
tools effectively can greatly increase your programming productivity. NetBeans and Eclipse
are easy to use if you follow the tutorials. Tutorials on NetBeans and Eclipse can be found in
the supplements on the Companion Website at www.pearsonglobaleditions.com/Liang.

Student Resources

The Companion Website (www.pearsonglobaleditions.com/Liang) contains the following
resources:

Answers to CheckPoint questions

Solutions to majority of even-numbered programming exercises
Source code for the examples in the book

Interactive quiz (organized by sections for each chapter)
Supplements

Debugging tips

Video notes

Algorithm animations

IDE tutorials

Preface 7

8 Preface

MyProgramminglLab’

Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The supplements are available from the Companion
Website.

Instructor Resources

The Companion Website, accessible from www.pearsonglobaleditions.com/Liang, contains the
following resources:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

B Solutions to a majority of odd-numbered programming exercises.

B More than 200 additional programming exercises and 300 quizzes organized by chapters.
These exercises and quizzes are available only to the instructors. Solutions to these
exercises and quizzes are provided.

B Web-based quiz generator. (Instructors can choose chapters to generate quizzes from a
large database of more than two thousand questions.)

B Sample exams. Most exams have four parts:
B Multiple-choice questions or short-answer questions
m Correct programming errors
B Trace programs
B Write programs
B Sample exams with ABET course assessment.

B Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some readers have requested the materials from the Instructor Resource Center. Please
understand that these are for instructors only. Such requests will not be answered.

Online Practice and Assessment
with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the
basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the sys-
tem automatically detects errors in the logic and syntax of their code submissions and offers
targeted hints that enable students to figure out what went wrong—and why. For instructors,
a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted
by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit www.myprogramminglab.com.

Video Notes

We are excited about the new Video Notes feature that is found in this new edition. These
videos provide additional help by presenting examples of key topics and showing how
to solve problems completely, from design through coding. Video Notes are available from
www.pearsonglobaleditions.com/Liang.

Algorithm Animations

We have provided numerous animations for algorithms. These are valuable pedagogical tools
to demonstrate how algorithms work. Algorithm animations can be accessed from the Com-
panion Website.

VideoNote

o

Animation

Preface 9

10 Preface

Acknowledgments

I would like to thank Armstrong State University for enabling me to teach what I write and for
supporting me in writing what I teach. Teaching is the source of inspiration for continuing to
improve the book. I am grateful to the instructors and students who have offered comments,
suggestions, bug reports, and praise.

This book has been greatly enhanced thanks to outstanding reviews for this and previous
editions. The reviewers are: Elizabeth Adams (James Madison University), Syed Ahmed (North
Georgia College and State University), Omar Aldawud (Illinois Institute of Technology), Stefan
Andrei (Lamar University), Yang Ang (University of Wollongong, Australia), Kevin Bierre
(Rochester Institute of Technology), Aaron Braskin (Mira Costa High School), David Champion
(DeVry Institute), James Chegwidden (Tarrant County College), Anup Dargar (University of
North Dakota), Daryl Detrick (Warren Hills Regional High School), Charles Dierbach (Towson
University), Frank Ducrest (University of Louisiana at Lafayette), Erica Eddy (University of
Wisconsin at Parkside), Summer Ehresman (Center Grove High School), Deena Engel (New
York University), Henry A. Etlinger (Rochester Institute of Technology), James Ten Eyck
(Marist College), Myers Foreman (Lamar University), Olac Fuentes (University of Texas at
El Paso), Edward F. Gehringer (North Carolina State University), Harold Grossman (Clemson
University), Barbara Guillot (Louisiana State University), Stuart Hansen (University of Wis-
consin, Parkside), Dan Harvey (Southern Oregon University), Ron Hofman (Red River College,
Canada), Stephen Hughes (Roanoke College), Vladan Jovanovic (Georgia Southern University),
Deborah Kabura Kariuki (Stony Point High School), Edwin Kay (Lehigh University), Larry
King (University of Texas at Dallas), Nana Kofi (Langara College, Canada), George Koutsogi-
annakis (Illinois Institute of Technology), Roger Kraft (Purdue University at Calumet), Norman
Krumpe (Miami University), Hong Lin (DeVry Institute), Dan Lipsa (Armstrong State Univer-
sity), James Madison (Rensselaer Polytechnic Institute), Frank Malinowski (Darton College),
Tim Margush (University of Akron), Debbie Masada (Sun Microsystems), Blayne Mayfield
(Oklahoma State University), John McGrath (J.P. McGrath Consulting), Hugh McGuire (Grand
Valley State), Shyamal Mitra (University of Texas at Austin), Michel Mitri (James Madison
University), Kenrick Mock (University of Alaska Anchorage), Frank Murgolo (California State
University, Long Beach), Jun Ni (University of lowa), Benjamin Nystuen (University of Colo-
rado at Colorado Springs), Maureen Opkins (CA State University, Long Beach), Gavin Osborne
(University of Saskatchewan), Kevin Parker (Idaho State University), Dale Parson (Kutztown
University), Mark Pendergast (Florida Gulf Coast University), Richard Povinelli (Marquette
University), Roger Priebe (University of Texas at Austin), Mary Ann Pumphrey (De Anza Junior
College), Pat Roth (Southern Polytechnic State University), Amr Sabry (Indiana University),
Ben Setzer (Kennesaw State University), Carolyn Schauble (Colorado State University), David
Scuse (University of Manitoba), Ashraf Shirani (San Jose State University), Daniel Spiegel
(Kutztown University), Joslyn A. Smith (Florida Atlantic University), Lixin Tao (Pace Uni-
versity), Ronald F. Taylor (Wright State University), Russ Tront (Simon Fraser University),
Deborah Trytten (University of Oklahoma), Michael Verdicchio (Citadel), Kent Vidrine (George
Washington University), and Bahram Zartoshty (California State University at Northridge).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Demetrius Hall, Yvonne Vannatta, Kristy Alaura,
Carole Snyder, Scott Disanno, Bob Engelhardt, Shylaja Gattupalli, and their colleagues for
organizing, producing, and promoting this project.

As always, I am indebted to my wife, Samantha, for her love, support, and encouragement.

Acknowledgments for the Global Edition

Pearson would like to thank and acknowledge Yvan Maillot (Univresite Haute-Alsace) and
Steven Yuwono (National University of Singapore) for contributing to this Global Edition,
and Arif Ahmed (National Institute of Technology, Silchar), Annette Bieniusa (University
of Kaiserslautern), Shaligram Prajapat (Devi Ahilya Vishwavidyalaya, Indore), and Ram
Gopal Raj (University of Malaya) for reviewing this Global Edition.

Preface 11

CONTENTS

12

Chapter 1

ook WN —

l.
I
I
l.
I
I

l.
l.
l.

O 00 ~N

.10
111
1.12

Chapter 2

2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9
.10
I
12
13
.14
15
16
17
.18

Chapter 3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

NNNNNNNNN

Introduction to C om1puters,

Programs, and Java™

Introduction

What Is a Computer?

Programming Languages

Operating Systems

Java, the World Wide Web, and Beyond
The Java Language Specification, API, JDK,
JRE, and IDE

A Simple Java Program

Creating, Compiling, and Executing a Java Program
Programming Style and Documentation
Programming Errors

Developing Java Programs Using NetBeans
Developing Java Programs Using Eclipse

Elementary Pro gramming

Introduction

Writing a Simple Program

Reading Input from the Console

Identifiers

Variables

Assignment Statements and Assignment Expressions
Named Constants

Naming Conventions

Numeric Data Types and Operations

Numeric Literals

Evaluating Expressions and Operator Precedence
Case Study: Displaying the Current Time
Augmented Assignment Operators

Increment and Decrement Operators

Numeric Type Conversions

Software Development Process

Case Study: Counting Monetary Units

Common Errors and Pitfalls

Selections

Introduction

boolean Data Type

if Statements

Two-Way 1if-else Statements

Nested if and Multi-Way if-else Statements
Common Errors and Pitfalls

Generating Random Numbers

Case Study: Computing Body Mass Index
Case Study: Computing Taxes

Logical Operators

Case Study: Determining Leap Year

Case Study: Lottery

switch Statements

100
102
103
105
109
111
112
115
119
120
122

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

Chapter 5

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Conditional Operators
Operator Precedence and Associativity
Debugging

Mathematical Functions,
Characters, and Strings

Introduction

Common Mathematical Functions
Character Data Type and Operations
The String Type

Case Studies

Formatting Console Output

Loops

Introduction

The while Loop

Case Study: Guessing Numbers
Loop Design Strategies

125
126
128

141

142
142
147
152
161
167

181

182
182
185
188

Controlling a Loop with User Confirmation or a Sentinel Value 190

The do-whiTe Loop

The for Loop

Which Loop to Use?

Nested Loops

Minimizing Numeric Errors

Case Studies

Keywords break and continue
Case Study: Checking Palindromes
Case Study: Displaying Prime Numbers

Methods

Introduction

Defining a Method

Calling a Method

void vs. Value-Returning Methods

Passing Parameters by Values

Modularizing Code

Case Study: Converting Hexadecimals to Decimals
Overloading Methods

The Scope of Variables

Case Study: Generating Random Characters
Method Abstraction and Stepwise Refinement

Single-Dimensional Arrays

Introduction

Array Basics

Case Study: Analyzing Numbers
Case Study: Deck of Cards
Copying Arrays

Passing Arrays to Methods
Returning an Array from a Method
Case Study: Counting the Occurrences of Each Letter
Variable-Length Argument Lists
Searching Arrays

Sorting Arrays

192
195
198
200
202
204
208
211
213

227

228
228
230
233
236
239
241
243
246
247
249

269

270
270
277
278
280
281
284
285
288
289
293

Contents 13

14 Contents

7.12
7.13

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

10.9
10.10
10.11

Chapter 11

1.1
11.2
.3
1.4
1.5
I1.6
1.7
11.8
1.9
I1.10

The Arrays Class
Command-Line Arguments

Multidimensional Arrays

Introduction

Two-Dimensional Array Basics

Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Methods
Case Study: Grading a Multiple-Choice Test
Case Study: Finding the Closest Pair

Case Study: Sudoku

Multidimensional Arrays

Objects and Classes

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructing Objects Using Constructors
Accessing Objects via Reference Variables
Using Classes from the Java Library

Static Variables, Constants, and Methods
Visibility Modifiers

Data Field Encapsulation

Passing Objects to Methods

Array of Objects

Immutable Objects and Classes

The Scope of Variables

The this Reference

Object-Oriented Thinking

Introduction

Class Abstraction and Encapsulation

Thinking in Objects

Class Relationships

Case Study: Designing the Course Class

Case Study: Designing a Class for Stacks
Processing Primitive Data Type Values as Objects
Automatic Conversion between Primitive Types
and Wrapper Class Types

The BigInteger and BigDecimal Classes
The String Class

The StringBuilder and StringBuffer Classes

Inheritance and
Polymorphism

Introduction

Superclasses and Subclasses

Using the super Keyword

Overriding Methods

Overriding vs. Overloading

The Object Class and Its toString() Method
Polymorphism

Dynamic Binding

Casting Objects and the instanceof Operator
The Object’s equals Method

294
296

311

312
312
315
317
318
320
322
325

345

346
346
348
353
354
358
361
366
368
371
375
377
379
380

389

390
390
394
397
400
402
404

407
408
410
416

433

434
434
440
443
444
446
447
447
451
455

.11
11.12
.13
11.14
.15

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

Chapter 15

15.1
15.2
15.3
15.4
15.5

The ArrayList Class

Useful Methods for Lists

Case Study: A Custom Stack Class
The protected Data and Methods
Preventing Extending and Overriding

Exception Handling
and Text1/0

Introduction
Exception-Handling Overview
Exception Types

More on Exception Handling
The finally Clause

When to Use Exceptions
Rethrowing Exceptions
Chained Exceptions

Defining Custom Exception Classes
The File Class

File Input and Output
Reading Data from the Web
Case Study: Web Crawler

456
462
463
464
467

475

476
476
481
484
492
493
494
495
496
499
502
508
510

Abstract Classes and Interfaces 521

Introduction

Abstract Classes

Case Study: the Abstract Number Class

Case Study: Calendar and GregorianCalendar
Interfaces

The Comparable Interface

The Cloneable Interface

Interfaces vs. Abstract Classes

Case Study: The Rational Class

Class-Design Guidelines

JavaFX Basics

Introduction

JavaFX vs Swing and AWT

The Basic Structure of a JavaFX Program
Panes, Groups, Ul Controls, and Shapes
Property Binding

Common Properties and Methods for Nodes
The Color Class

The Font Class

The Image and ImageView Classes
Layout Panes and Groups

Shapes

Case Study: The C1ockPane Class

Event-Driven Programming

and Animations

Introduction

Events and Event Sources

Registering Handlers and Handling Events
Inner Classes

Anonymous Inner Class Handlers

522
522
527
529
532
535
540
545
548
553

563

564
564
564
567
570
573
575
576
578
580
589
602

615

616
618
619
623
624

Contents 15

16 Contents

15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14

Chapter 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7

Chapter 18

18.1
18.2
18.3

18.4
18.5
18.6
18.7
18.8
18.9
18.10

APPENDIXES

Simplifying Event Handling Using Lambda Expressions
Case Study: Loan Calculator

Mouse Events

Key Events

Listeners for Observable Objects

Animation

Case Study: Bouncing Ball

Case Study: US Map

JavaFX Ul Controls
and Multimedia

Introduction

Labeled and Label

Button

CheckBox

RadioButton

TextField

TextArea

ComboBox

ListView

Scroll1Bar

Slider

Case Study: Developing a Tic-Tac-Toe Game
Video and Audio

Case Study: National Flags and Anthems

Binary 1/0

Introduction

How Is Text /O Handled in Java?
Text /O vs. Binary 1/0

Binary I/O Classes

Case Study: Copying Files
Object 1/0

Random-Access Files

Recursion

Introduction

Case Study: Computing Factorials
Case Study: Computing Fibonacci
Numbers

Problem Solving Using Recursion
Recursive Helper Methods

Case Study: Finding the Directory Size
Case Study: Tower of Hanoi

Case Study: Fractals

Recursion vs. Iteration

Tail Recursion

Appendix A Java Keywords
Appendix B The ASCIl Character Set

627
631
633
635
638
640
648
652

665

666
666
668
670
673
676
677
681
684
687
690
693
698
701

713

714
714
715
716
726
728
733

741

742
742

745
748
750
753
755
758
762
762

773
775
776

Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Operator Precedence Chart
Java Modifiers

Special Floating-Point Values
Number Systems

Bitwise Operations

Regular Expressions

Enumerated Types

QUICK REFERENCE

INDEX

778
780
782
783
787
788
793

799
801

Contents 17

This page intentionally left blank

VideoNotes

Locations of VideoNotes
www.pearsonglobaleditions.com/Liang

Chapter I Introduction to Computers, Programs,
and Java™ 23
Your first Java program 34
Compile and run a Java program 39
NetBeans brief tutorial 45
Eclipse brief tutorial 47 Chapter 8
Chapter 2 Elementary Programming 55
Obtain input 59
Use operators / and % 74
Software development
process 8l
Compute loan payments 82 Chapter 9
Compute BMI 94
Chapter 3 Selections 97
Program addition quiz 99
Program subtraction quiz 109
Use multi-way if-else
statements 112
Sort three integers 132 Chapter 10
Check point location 134
Chapter 4 Mathematical Functions, Characters,
and Strings 141
Introduce Math functions 142
Introduce strings and objects 152
Convert hex to decimal 165
Compute great circle distance 173 Chapter 11
Convert hex to binary 176
Chapter 5 Loops 181
Use while loop 182
Guess a number 185
Multiple subtraction quiz 188
Use do-while loop 192
Minimize numeric errors 202 Chapter 12
Display loan schedule 219
Sum a series 220
Chapter 6 Methods 227
Define/invoke max method 230
Use void method 233 Chapter 13
Modularize code 239
Stepwise refinement 249
Reverse an integer 258
Estimate = 261
Chapter 7 Single-Dimensional Arrays 269
Random shuffling 274 Chapter 14
Deck of cards 278

VideoNote

Selection sort 293
Command-line arguments 297
Coupon collector’s problem 304
Consecutive four 306
Multidimensional Arrays 311
Find the row with the largest sum 316
Grade multiple-choice test 318
Sudoku 322
Multiply two matrices 331
Even number of Is 338
Objects and Classes 345
Define classes and objects 346
Use classes 358
Static vs. instance 361
Data field encapsulation 368
The this keyword 380
The Fan class 386
Object-Oriented Thinking 389
The Loan class 391
The BMI class 394
The StackOfIntegers class 402
Process large numbers 408
The String class 410
The MyPoint class 424
Inheritance and Polymorphism 433
Geometric class hierarchy 434
Polymorphism and dynamic

binding demo 448
The ArrayList class 456
The MyStack class 463
New Account class 470
Exception Handling and Text 1/O 475
Exception-handling advantages 476
Create custom exception classes 496
Write and read data 502
HexFormatException 515
Abstract Classes and Interfaces 521
Abstract GeometricObject class 522
Calendar and Gregorian

Calendar classes 529
The concept of interface 532
Redesign the Rectangle class 558
JavaFX Basics 563
Getting started with JavaFX 564

19

20 VideoNotes

Chapter 15

Understand property binding
Use Image and ImageView
Use layout panes

Use shapes

Display a tic-tac-toe board
Display a bar chart

Event-Driven Programming

and Animations

Handler and its registration
Anonymous handler

Move message using the mouse
Animate a rising flag

Flashing text

Simple calculator

Check mouse-point location
Display a running fan

Chapter 16 JavaFX Ul Controls and Multimedia

Use ListView

570
578
580
589
608
610

615
622
625
634
640
646
656
658
661

665
684

Chapter 17

Chapter 18

Use S1ider
Tic-Tac-Toe

Use Media, MediaPlayer,

and MediaView

Use radio buttons and text
fields

Set fonts

Binary 1/0O
Copy file
Object 1/O
Split a large file

Recursion

Binary search

Directory size

Fractal (Sierpinski triangle)
Search a string in a directory
Recursive tree

690
693

698

705
707

713
726
728
738

741
752
753
758
769
772

Animations

Chapter 7

Single-Dimensional Arrays
linear search animation on
Companion Website
binary search animation on
Companion Website
selection sort animation on
Companion Website

269

290

290

293

Chapter 8

Multidimensional Arrays
closest-pair animation on
the Companion Website

2]

This page intentionally left blank

INTRODUCTION
To COMPUTERS,
PROGRAMS, AND JavATM

Objectives

To understand computer basics, programs, and operating systems

(§81.2-1.4).

To describe the relationship between Java and the World Wide Web
(§1.5).

To understand the meaning of Java language specification, API, JDK™,
JRE™, and IDE (§1.6).

To write a simple Java program (§1.7).

To display output on the console (§1.7).

To explain the basic syntax of a Java program (§1.7).
To create, compile, and run Java programs (§1.8).

To use sound Java programming style and document programs properly

(§1.9).

To explain the differences between syntax errors, runtime errors, and
logic errors (§1.10).

To develop Java programs using NetBeans™ (§1.11).

To develop Java programs using Eclipse™ (§1.12).

CHAPTER

24 Chapter |

Introduction to Computers, Programs, and Java™

Key
Point

what is programming?

programming
program

hardware
software

bus

Key
Point

[.1 Introduction

The central theme of this book is to learn how to solve problems by writing a program.

This book is about programming. So, what is programming? The term programming means to
create (or develop) software, which is also called a program. In basic terms, software contains
instructions that tell a computer—or a computerized device—what to do.

Software is all around you, even in devices you might not think would need it. Of course,
you expect to find and use software on a personal computer, but software also plays a role in
running airplanes, cars, cell phones, and even toasters. On a personal computer, you use word
processors to write documents, web browsers to explore the Internet, and e-mail programs to
send and receive messages. These programs are all examples of software. Software developers
create software with the help of powerful tools called programming languages.

This book teaches you how to create programs by using the Java programming language.
There are many programming languages, some of which are decades old. Each language was
invented for a specific purpose—to build on the strengths of a previous language, for example,
or to give the programmer a new and unique set of tools. Knowing there are so many program-
ming languages available, it would be natural for you to wonder which one is best. However, in
truth, there is no “best” language. Each one has its own strengths and weaknesses. Experienced
programmers know one language might work well in some situations, whereas a different
language may be more appropriate in other situations. For this reason, seasoned programmers
try to master as many different programming languages as they can, giving them access to a
vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up other lan-
guages. The key is to learn how to solve problems using a programming approach. That is the
main theme of this book.

You are about to begin an exciting journey: learning how to program. At the outset, it is
helpful to review computer basics, programs, and operating systems (OSs). If you are already
familiar with such terms as central processing unit (CPU), memory, disks, operating systems,
and programming languages, you may skip Sections 1.2-1.4.

[.2 What Is a Computer?

A computer is an electronic device that stores and processes data.

A computer includes both hardware and software. In general, hardware comprises the visible,
physical elements of the computer, and software provides the invisible instructions that control
the hardware and make it perform specific tasks. Knowing computer hardware isn’t essential
to learning a programming language, but it can help you better understand the effects that a
program’s instructions have on the computer and its components. This section introduces
computer hardware components and their functions.

A computer consists of the following major hardware components (see Figure 1.1):

B A central processing unit (CPU)

Memory (main memory)

Storage devices (such as disks and CDs)

Input devices (such as the mouse and the keyboard)

Output devices (such as monitors and printers)

B Communication devices (such as modems and network interface cards (NIC))

A computer’s components are interconnected by a subsystem called a bus. You can think
of a bus as a sort of system of roads running among the computer’s components; data and
power travel along the bus from one part of the computer to another. In personal computers,

[.2 What Is a Computer? 25

Bus
Storage Communication Input Output
Devices Loy L Devices Devices Devices
e.g., Disk, CD,) e.g., Modem, e.g., Keyboard, e.g., Monitc;r,
and Tape and NIC Mouse Printer

FIGURe 1.1 A computer consists of a CPU, memory, storage devices, input devices, output
devices, and communication devices.

the bus is built into the computer’s motherboard, which is a circuit case that connects all of motherboard
the parts of a computer together.

[.2.1 Central Processing Unit

The central processing unit (CPU) is the computer’s brain. It retrieves instructions from the ~CPU
memory and executes them. The CPU usually has two components: a control unit and an
arithmetic/logic unit. The control unit controls and coordinates the actions of the other com-
ponents. The arithmetic/logic unit performs numeric operations (addition, subtraction, multi-
plication, and division) and logical operations (comparisons).

Today’s CPUs are built on small silicon semiconductor chips that contain millions of tiny
electric switches, called transistors, for processing information.

Every computer has an internal clock that emits electronic pulses at a constant rate. These
pulses are used to control and synchronize the pace of operations. A higher clock speed enables speed
more instructions to be executed in a given period of time. The unit of measurement of clock
speed is the hertz (Hz), with 1 Hz equaling 1 pulse per second. In the 1990s, computers meas- hertz
ured clock speed in megahertz (MHz), but CPU speed has been improving continuously; the = megahertz
clock speed of a computer is now usually stated in gigahertz (GHz). Intel’s newest processors gigahertz
run at about 3 GHz.

CPUs were originally developed with only one core. The core is the part of the processor core
that performs the reading and executing of instructions. In order to increase the CPU processing
power, chip manufacturers are now producing CPUs that contain multiple cores. A multicore
CPU is a single component with two or more independent cores. Today’s consumer comput-
ers typically have two, three, and even four separate cores. Soon, CPUs with dozens or even
hundreds of cores will be affordable.

1.2.2 Bits and Bytes

Before we discuss memory, let’s look at how information (data and programs) are stored in
a computer.
A computer is really nothing more than a series of switches. Each switch exists in two states:
on or off. Storing information in a computer is simply a matter of setting a sequence of switches
on or off. If the switch is on, its value is 1. If the switch is off, its value is 0. These Os and 1s
are interpreted as digits in the binary number system and are called bits (binary digits). bits
The minimum storage unit in a computer is a byte. A byte is composed of eight bits. A small byte
number such as 3 can be stored as a single byte. To store a number that cannot fit into a single
byte, the computer uses several bytes.
Data of various kinds, such as numbers and characters, are encoded as a series of bytes. As
a programmer, you don’t need to worry about the encoding and decoding of data, which the
computer system performs automatically, based on the encoding scheme. An encoding scheme encoding scheme
is a set of rules that govern how a computer translates characters and numbers into data with
which the computer can actually work. Most schemes translate each character into a

26 Chapter I Introduction to Computers, Programs, and Java™

predetermined string of bits. In the popular ASCII encoding scheme, for example, the character
C is represented as 01000011 in 1 byte.
A computer’s storage capacity is measured in bytes and multiples of the byte, as follows:

kilobyte (KB) B A kilobyte (KB) is about 1,000 bytes.
megabyte (MB) B A megabyte (MB) is about 1 million bytes.
gigabyte (GB) B A gigabyte (GB) is about 1 billion bytes.
terabyte (TB) B A terabyte (TB) is about 1 trillion bytes.

A typical one-page word document might take 20 KB. Therefore, 1 MB can store 50 pages
of documents, and 1 GB can store 50,000 pages of documents. A typical two-hour high-
resolution movie might take 8 GB, so it would require 160 GB to store 20 movies.

1.2.3 Memory

memory A computer’s memory consists of an ordered sequence of bytes for storing programs as well
as data with which the program is working. You can think of memory as the computer’s work
area for executing a program. A program and its data must be moved into the computer’s
memory before they can be executed by the CPU.

unique address Every byte in the memory has a unique address, as shown in Figure 1.2. The address is used
to locate the byte for storing and retrieving the data. Since the bytes in the memory can be
RAM accessed in any order, the memory is also referred to as random-access memory (RAM).

Memory address Memory content

2000 |01000011| Encoding for character ‘C’
2001 | 01110010| Encoding for character ‘r’

2002 |01100101| Encoding for character ‘e’

2003 | 01110111 | Encoding for character ‘w’
2004 | 00000011f Decimal number 3

FIGURE 1.2 Memory stores data and program instructions in uniquely addressed memory
locations.

Today’s personal computers usually have at least 4 GB of RAM, but they more commonly
have 6 to 8 GB installed. Generally speaking, the more RAM a computer has, the faster it can
operate, but there are limits to this simple rule of thumb.

A memory byte is never empty, but its initial content may be meaningless to your program.
The current content of a memory byte is lost whenever new information is placed in it.

Like the CPU, memory is built on silicon semiconductor chips that have millions of transis-
tors embedded on their surface. Compared to CPU chips, memory chips are less complicated,
slower, and less expensive.

1.2.4 Storage Devices

A computer’s memory (RAM) is a volatile form of data storage: Any information that
has been saved in memory is lost when the system’s power is turned off. Programs and
storage devices data are permanently stored on storage devices and are moved, when the computer actu-

[.2 What Is a Computer? 27

ally uses them, to memory, which operates at much faster speeds than permanent storage
devices can.
There are three main types of storage devices:

B Magnetic disk drives
B Optical disc drives (CD and DVD)
m Universal serial bus (USB) flash drives

Drives are devices for operating a medium, such as disks and CDs. A storage medium drive
physically stores data and program instructions. The drive reads data from the medium and
writes data onto the medium.

Disks

A computer usually has at least one hard disk drive. Hard disks are used for permanently stor- hard disk
ing data and programs. Newer computers have hard disks that can store from 500 GB to 1 TB

of data. Hard disk drives are usually encased inside the computer, but removable hard disks

are also available.

CDs and DVDs

CD stands for compact disc. There are three types of CDs: CD-ROM, CD-R, and CD-RW. A CD- CD-ROM
ROM is a prepressed disc. It was popular for distributing software, music, and video. Software, CD-R
music, and video are now increasingly distributed on the Internet without using CDs. A CD-R
(CD-Recordable) is a write-once medium. It can be used to record data once and read any number ~CD-RW
of times. A CD-RW (CD-ReWritable) can be used like a hard disk; that is, you can write data onto
the disc, then overwrite that data with new data. A single CD can hold up to 700 MB.

DVD stands for digital versatile disc or digital video disc. DVDs and CDs look alike, and DVD
you can use either to store data. A DVD can hold more information than a CD; a standard
DVD’s storage capacity is 4.7 GB. There are two types of DVDs: DVD-R (Recordable) and
DVD-RW (ReWritable).

USB Flash Drives

Universal serial bus (USB) connectors allow the user to attach many kinds of peripheral
devices to the computer. You can use an USB to connect a printer, digital camera, mouse,
external hard disk drive, and other devices to the computer.

An USB flash drive is a device for storing and transporting data. A flash drive is small—about
the size of a pack of gum. It acts like a portable hard drive that can be plugged into your computer’s
USB port. USB flash drives are currently available with up to 256 GB storage capacity.

1.2.5 Input and Output Devices

Input and output devices let the user communicate with the computer. The most common
input devices are the keyboard and mouse. The most common output devices are monitors
and printers.

The Keyboard

A keyboard is a device for entering input. Compact keyboards are available without a numeric
keypad.

Function keys are located across the top of the keyboard and are prefaced with the letter F. function key
Their functions depend on the software currently being used.

A modifier key is a special key (such as the Shift, Alt, and Ctrl keys) that modifies the normal modifier key
action of another key when the two are pressed simultaneously.

28 Chapter |
numeric keypad
arrow keys

Insert key

Delete key

Page Up key
Page Down key

screen resolution
pixels

dot pitch

dial-up modem
digital subscriber line (DSL)
cable modem

network interface card (NIC)
local area network (LAN)

million bits per second
(mbps)

ﬁheck
Point

Introduction to Computers, Programs, and Java™

The numeric keypad, located on the right side of most keyboards, is a separate set of keys
styled like a calculator to use for quickly entering numbers.

Arrow keys, located between the main keypad and the numeric keypad, are used to move
the mouse pointer up, down, left, and right on the screen in many kinds of programs.

The Insert, Delete, Page Up, and Page Down keys are used in word processing and other
programs for inserting text and objects, deleting text and objects, and moving up or down
through a document one screen at a time.

The Mouse

A mouse is a pointing device. It is used to move a graphical pointer (usually in the shape of
an arrow) called a cursor around the screen, or to click on-screen objects (such as a button) to
trigger them to perform an action.

The Monitor

The monitor displays information (text and graphics). The screen resolution and dot pitch
determine the quality of the display.

The screen resolution specifies the number of pixels in horizontal and vertical dimensions
of the display device. Pixels (short for “picture elements”) are tiny dots that form an image on
the screen. A common resolution for a 17-inch screen, for example, is 1,024 pixels wide and
768 pixels high. The resolution can be set manually. The higher the resolution, the sharper and
clearer the image is.

The dot pitch is the amount of space between pixels, measured in millimeters. The smaller
the dot pitch, the sharper is the display.

1.2.6 Communication Devices

Computers can be networked through communication devices, such as a dial-up modem
(modulator/demodulator), a digital subscriber line (DSL) or cable modem, a wired network
interface card, or a wireless adapter.

B A dial-up modem uses a phone line to dial a phone number to connect to the Internet
and can transfer data at a speed up to 56,000 bps (bits per second).

B A digital subscriber line (DSL) connection also uses a standard phone line, but it can
transfer data 20 times faster than a standard dial-up modem.

B A cable modem uses the cable line maintained by the cable company and is generally
faster than DSL.

B A network interface card (NIC) is a device that connects a computer to a local area
network (LAN). LANs are commonly used to connect computers within a limited area
such as a school, a home, and an office. A high-speed NIC called /000BaseT can
transfer data at 1,000 million bits per second (mbps).

B Wireless networking is now extremely popular in homes, businesses, and schools.
Every laptop computer sold today is equipped with a wireless adapter that enables the
computer to connect to the LAN and the Internet.

7

‘What are hardware and software?

Note
Answers to the CheckPoint questions are available at www.pearsonglobaleditions
.com/Liang. Choose this book and click Companion Website to select CheckPoint.

1.2.1

1.2.2 List the five major hardware components of a computer.

[.3 Programming Languages 29

1.2.3 What does the acronym CPU stand for? What unit is used to measure CPU speed?
1.2.4 What is a bit? What is a byte?

1.2.5 What is memory for? What does RAM stand for? Why is memory called RAM?
1.2.6 What unit is used to measure memory size? What unit is used to measure disk size?

1.2.7 What is the primary difference between memory and a storage device?

[.3 Programming Languages

Computer programs, known as software, are instructions that tell a computer what to do.

Computers do not understand human languages, so programs must be written in a language a Key
computer can use. There are hundreds of programming languages, and they were developed ~ Point
to make the programming process easier for people. However, all programs must be converted

into the instructions the computer can execute.

[.3.1 Machine Language

A computer’s native language, which differs among different types of computers, is its machine machine language
language—a set of built-in primitive instructions. These instructions are in the form of binary

code, so if you want to give a computer an instruction in its native language, you have to enter

the instruction as binary code. For example, to add two numbers, you might have to write an

instruction in binary code as follows:

1101101010011010

[.3.2 Assembly Language

Programming in machine language is a tedious process. Moreover, programs written in

machine language are very difficult to read and modify. For this reason, assembly language assembly language
was created in the early days of computing as an alternative to machine languages. Assembly

language uses a short descriptive word, known as a mnemonic, to represent each of the
machine-language instructions. For example, the mnemonic add typically means to add num-

bers, and sub means to subtract numbers. To add the numbers 2 and 3 and get the result, you

might write an instruction in assembly code as follows:

add 2, 3, result

Assembly languages were developed to make programming easier. However, because the
computer cannot execute assembly language, another program—called an assembler—is used — assembler
to translate assembly-language programs into machine code, as shown in Figure 1.3.

Machine-Code File

Assembly Source File

add 2, 3, result

1101101010011010

FIGURE 1.3 An assembler translates assembly-language instructions into machine code.

Writing code in assembly language is easier than in machine language. However, it is still
tedious to write code in assembly language. An instruction in assembly language essentially
corresponds to an instruction in machine code. Writing in assembly language requires that you

30 Chapter |

low-level language

high-level language

statement

Introduction to Computers, Programs, and Java™

know how the CPU works. Assembly language is referred to as a low-level language, because
assembly language is close in nature to machine language and is machine dependent.

1.3.3 High-Level Language

In the 1950s, a new generation of programming languages known as high-level languages
emerged. They are platform independent, which means that you can write a program in a high-
level language and run it in different types of machines. High-level languages are similar to
English and easy to learn and use. The instructions in a high-level programming language are
called statements. Here, for example, is a high-level language statement that computes the area of
a circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for a specific
purpose. Table 1.1 lists some popular ones.

TasLE 1.1 Popular High-Level Programming Languages

Language Description

Ada Named for Ada Lovelace, who worked on mechanical general-purpose computers. Developed for the Department
of Defense and used mainly in defense projects.

BASIC Beginner’s All-purpose Symbolic Instruction Code. Designed to be learned and used easily by beginners.

C Developed at Bell Laboratories. Combines the power of an assembly language with the ease of use and portability
of a high-level language.

C++ An object-oriented language, based on C

C# Pronounced “C Sharp.” An object-oriented programming language developed by Microsoft.

COBOL COmmon Business Oriented Language. Used for business applications.

FORTRAN FORmula TRANSslation. Popular for scientific and mathematical applications.

Java Developed by Sun Microsystems, now part of Oracle. An object-oriented programming language, widely used for
developing platform-independent Internet applications.

JavaScript A Web programming language developed by Netscape

Pascal Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. A simple, structured,
general-purpose language primarily for teaching programming.

Python A simple general-purpose scripting language good for writing short programs.

Visual Basic

source program
source code

interpreter

compiler

Visual Basic was developed by Microsoft. Enables the programmers to rapidly develop Windows-based
applications.

A program written in a high-level language is called a source program or source code.
Because a computer cannot execute a source program, a source program must be translated
into machine code for execution. The translation can be done using another programming tool
called an interpreter or a compiler.

B An interpreter reads one statement from the source code, translates it to the machine
code or virtual machine code, then executes it right away, as shown in Figure 1.4a.
Note a statement from the source code may be translated into several machine
instructions.

